SANTE, RISQUES ET QUALITE DE VIE A PROXIMITE DES INSTALLATIONS EOLIENNES

A quelle distance sont-elles trop près ?

télécharger ici ledocument en français (word
)
(avec tous nos remerciements à Katerine ROUSIES pour la traduction en Français)
Nina Pierpont, docteur en médecine (2005)
http://www.ninapierpont.com

Health, hazard, and quality of life near wind power installations

How close is too close?

télécharger ici le document en anglais (pdf)

Nina Pierpont, MD, PhD*
Malone (New York, USA) Telegram, March 2, 2005, p. 5

(que nous remercions chaleureusement de nous avoir autorisé avec l'aide de M. Duchamp à diffuser ce rapport)

Lire aussi l'étude majeure publiée par la Physicienne Amanda Harry détaillée en 2004 dan un document du DailyTelegraph
"Catherine Milner-25012004.pdf" de VDC rubrique "Santé et éolien industriel"
(document .pdf)
r

CHUTES
Une nacelle (générateur et boîte de vitesses) qui pèse jusqu'à 60 tonnes, au sommet d'une tour métallique de 80 mètres, équipée de pales de 40 mètres, constitue un risque significatif pour les personnes, le bétail, les bâtiments et la circulation, dans un rayon égal à la hauteur de la structure (120 mètres) et au-delà. En Allemagne, en 2003, au cours d'un vent violent, les freins d'une éolienne sont tombés en panne et les pales n'étaient plus contrôlées. Une pale a frappé la tour, et la nacelle toute entière est tombée de la tour. Les pales et d'autres pièces ont atterri jusqu'à 500 mètres de la base de la tour. (Il est à noter que toutes les éoliennes mentionnées dans cet article sont des éoliennes industrielles à trois pales, de type " face au vent ". Les éoliennes de type " sous le vent " ne sont plus construites depuis les années 80). Etant donné la date, cette éolienne était probablement plus petite que celles construites actuellement, et ne pouvait donc projeter des pièces aussi loin. Cette distance est presque identique aux calculs de projection de glace par des éoliennes équipées de pales de 30 mètres tournant à 20 tours/minute (512 mètres).
INCENDIES
La plupart des incendies d'éoliennes sont causés par la foudre, et sont alimentés par 1000 litres d'huile hydraulique dans la nacelle. Il est probable que combattre un tel incendie à 80 mètres (26 étages) soit impossible avec le matériel habituellement disponible. Par ailleurs, un incendie peut endommager les commandes de l'éolienne jusqu'à ce que l'appareillage de la nacelle soit réparé ou remplacé, ce qui la rend plus sujette encore aux types d'accidents décrits dans le paragraphe précédent.
FOUDRE ET SURTENSIONS
Les éoliennes causent elles-mêmes des irrégularités dans la fourniture de courant en fonction de la vitesse du vent. Sur le réseau, l'offre et la demande doivent toujours être en équilibre : il n'y a pas de stockage de l'électricité. Quand le vent tombe, il y a moins de puissance (panne partielle), jusqu'à ce qu'une centrale au charbon ou au gaz, placée à une certaine distance de la centrale éolienne, démarre pour accroître la production. Quand le vent souffle fort, il y a des surtensions. Des habitants qui vivent près d'une centrale éolienne à Meyersdale, PA, qui a démarré en décembre 2003, ont dû remplacer des éléments de cuisson et des petits appareils à cause de surtensions qui ont commencé à cette époque. Des habitants de Lincoln Township, WI, situés près d'une centrale éolienne, ont remarqué une augmentation des cas de foudre dans leur région, après la mise en route des éoliennes en juin 1999. Deux ordinateurs protégés par des parasurtenseurs et un téléviseur, se trouvant dans des habitations différentes, ont été foudroyés simultanément un soir lorsque la foudre a frappé une éolienne proche.
EFFET STROBOSCOPIQUE
Lorsqu'elles tournent en ayant le soleil derrière elles, les pales projettent des ombres mouvantes sur le paysage et les habitations, provoquant à l'intérieur un effet stroboscopique difficilement évitable. Certaines personnes perdent l'équilibre ou souffrent de nausées à la vue du mouvement. Comme pour le mal des transports ou le mal de mer, ceci est dû au fait que les trois organes de perception de la position (oreille interne, yeux et récepteurs musculaires et articulaires) sont en désaccord : les yeux perçoivent un mouvement, alors que les oreilles et les muscles ne le perçoivent pas. Les personnes ayant des antécédents personnels ou familiaux de migraine, ou de phénomènes associés comme le mal des transports ou le vertige, sont plus sensibles à ces effets. L'effet stroboscopique peut aussi provoquer des crises d'épilepsie. A Lincoln Township, WI, deux ans après l'installation, 33 % des personnes habitant entre 250 m et 400 m des éoliennes considéraient l'ombre des pales comme un problème, 40 % entre 400 m et 800 m, 18 % entre 800 m et 1,6 km, et 3 % entre 1,6 km et 3,2 km. (Echantillon de 230 personnes).
BRUIT
Dans la même étude de Lincoln Township en 2001, il apparaît que 44 % des personnes habitant entre 250 m et 400 m des éoliennes considéraient le bruit perçu depuis leur habitation comme gênant, 52 % entre 400 m et 800 m, 32 % entre 800 m et 1,6 km, et 4 % entre 1,6 km et 3,2 km. (Echantillon de 229 personnes). Dans certaines conditions, le bruit des éoliennes pouvait s'entendre jusqu'à plus de 3 km. Ces chiffres correspondent bien aux mesures effectuées par un ingénieur acousticien aux abords d'une installation plus récente de 30 MW et 17 éoliennes sur la frontière germano-néerlandaise, où les habitants situés à 500 m ou plus des éoliennes réagissaient fortement au bruit, et ceux situés jusqu'à 1900 m disaient être gênés. L'ingénieur a constaté que les niveaux de bruit mesurés étaient plus élevés que dans les exemples standard à cause des différences entre les caractéristiques diurnes et nocturnes du vent, et que la gêne était accrue selon la nature du bruit (impulsion, battements), cas constaté à une certaine distance des éoliennes (en l'occurrence 1500 m), mais pas juste en dessous. Ce bruit a été décrit comme " bruit de battement de faible hauteur ". Dans toutes les études, des bruits suffisants pour empêcher de dormir ou interrompre le sommeil, même fenêtres fermées, ont été constatés dans des habitations proches de centrales éoliennes. Le son à basse fréquence (10 à 200 Hz), circule plus loin, traverse les murs et contourne les obstacles à cause de sa longueur d'onde. Les sons dans la gamme de 25 à 150 Hz ont des longueurs d'onde similaires aux dimensions des pièces, et peuvent se répercuter dans les pièces. Le son à basse fréquence est particulièrement gênant, selon l'Organisation Mondiale de la Santé : " Les bruits à basse fréquence, par exemple ceux provenant des systèmes de ventilation, peuvent gêner le repos et le sommeil, même à un bas niveau de bruit ". " Pour les bruits ayant une large proportion de sons à basse fréquence, nous recommandons un seuil plus bas que 30 dBA. " (C'est-à-dire 30 dB de pression avec un filtre " A "). " Lorsqu'on est en présence de composantes à basse fréquence, les mesures basées sur des filtres A sont inappropriées. " (Le filtre A, qui élimine les sons à basse fréquence, est utilisé de façon standard dans les mesures de bruit). " Etant donné que le filtre A sous-estime le niveau de pression du bruit avec des composantes à basse fréquence, une meilleure estimation des effets sur la santé serait donnée par un filtre C ". (Le filtre C élimine moins de sons à basse fréquence). " Il est à noter qu'une grande proportion de sons à basse fréquence dans le bruit peut augmenter considérablement les effets nocifs sur la santé ". En d'autres termes, l'Organisation Mondiale de la Santé recommande que les normes-seuils de mesure du bruit soient fixées plus bas que 30 dB (ainsi que mesuré avec un filtre A), chaque fois que le bruit a une part importante de composantes à basse fréquence, ce qui est le cas avec les éoliennes. Encore une fois, ceci est dû au fait que le bruit à basse fréquence est plus perturbant et a des conséquences plus importantes sur la santé, même à faible niveau de bruit, qu'un bruit à haute fréquence. Pour mesurer ce type de bruit, un filtre C donnera une lecture plus précise du niveau de bruit, en incluant plus de sons à basse fréquence.Le Docteur Amanda Harry, une physicienne britannique, a constaté (aux abords d'une centrale de 16 éoliennes en 2003) que 13 des 14 personnes interrogées souffraient d'une augmentation des maux de tête, et que 10 rencontraient des troubles du sommeil et de l'anxiété. Les autres symptômes étaient des migraines, des nausées, des vertiges, des palpitations, du stress et de la dépression. Le bruit peut entraîner des vertiges et des pertes d'équilibre chez les personnes ayant des antécédents de pertes auditives dues au bruit car, dans le cas de dommages auditifs dus à une exposition intensive au bruit (ex. : machines), les organes de l'équilibre de l'oreille interne peuvent également être endommagés. Cela porte le nom de phénomène Tullio. Les vertiges et l'anxiété sont des phénomènes neurologiques. Par conséquent, les cas d'anxiété et de dépression constatés en association avec d'autres symptômes à proximité des centrales éoliennes ne sont pas une réponse névrotique aux symptômes, mais plutôt une réponse neurologique aux problèmes d'équilibre que les personnes ressentent à cause des effets stroboscopiques ou des bruits à basse fréquence. La privation de sommeil, soit dit en passant, entraîne elle aussi de l'anxiété et de la dépression. Les personnes âgées, qui dorment souvent moins profondément, sont plus susceptibles de souffrir de troubles du sommeil à cause du bruit des éoliennes. Elles peuvent également souffrir plus facilement de troubles de l'équilibre à proximité des éoliennes, à cause des problèmes liés à l'âge et relatifs à la fonction de l'oreille interne (vertiges et acouphènes) ou aux nerfs et aux parties du cerveau qui reçoivent les signaux de l'oreille interne. Il est à noter que, parmi les personnes en bonne santé de 57 à 91 ans, 5 % ont des vertiges chroniques, et 24 % des acouphènes.
CONCLUSION
Au vu de ces effets sur la santé et de ces risques, les éoliennes ne devraient pas être placées à moins de 500 m d'une route ou d'une habitation. Les personnes vivant à moins de 800 m devraient être informées qu'elles risquent de subir des niveaux de bruits et des effets stroboscopiques très gênants, qui se prolongent (à un moindre degré) jusqu'à 1,6 km et plus des éoliennes. A 3,2 km, le bruit est parfois perceptible, mais peu d'habitants sont gênés. A Lincoln Township, WI, deux ans après l'installation des éoliennes, 73 % des habitants disent qu'ils n'envisageraient pas d'acheter ou de construire une maison à moins d'1,6 km des éoliennes, et 23 % souhaiteraient résider à au moins 3,2 km. (Echantillon de 212 personnes).
Il est significatif que chacun de ces rapports (le premier sur les risques de chutes, le second sur le bruit), est conforté par des données indépendantes mais qui amènent au même résultat. Pour le bruit, les données (qui concernent deux centrales éoliennes d'âge et de pays différents) provenant d'une étude locale et des mesures effectuées par un ingénieur mentionnent la même distance à laquelle le bruit cesse d'être gênant : entre 1,6 et 2 km. Par conséquent, l'âge ou le type d'installation n'influe pas sur le problème du bruit, et les mesures effectuées de façon appropriée confortent les dires des riverains.
En conclusion, d'après ces données, les éoliennes ne devraient pas être implantées à moins de 2,5 km des habitations. Ceci tout en sachant qu'il y aura toujours des problèmes de santé et de qualité de vie causés par les éoliennes au-delà de cette distance. Les personnes vivant entre 2,5 km et 5 km d'une future centrale éolienne devraient être prévenues des effets potentiels sur la santé et la qualité de vie, et être correctement indemnisées pour ce préjudice.

 

Health, hazard, and quality of life near wind power installations
How close is too close?

Nina Pierpont, MD, PhD*
Malone (New York, USA) Telegram, March 2, 2005, p. 5
Copyright held by Nina Pierpont télécharger l'artice (pdf en angais)


Falling over
A nacelle (generator and gearbox) weighing up to 60 tons atop a 265 ft. metal tower, equipped with 135 ft. blades, is a significant hazard to people, livestock, buildings, and traffic within a radius equal to the height of the structure (400 ft) and beyond. In Germany in 2003, in high storm winds, the brakes on a wind turbine failed and the blades spun out of control. A blade struck the tower and the entire nacelle flew off the tower. The blades and other parts landed as far as 1650 ft (0.31 mile) from the base of the tower. (Note that all turbines discussed in this article are "upwind," three-bladed, industrial-sized turbines. "Downwind" turbines have not been built since the 1980's.) Given the date, this turbine was probably smaller than the ones proposed for current construction, and thus could not throw pieces as far. This distance is nearly identical to calculations of ice throw from turbines with 100 ft blades rotating 20 times per minute (1680 ft).
Fires
Most fires in wind turbines are started by lightning and fueled by up to 200 gallons of hydraulic oil in the nacelle. Fire-fighting at 265 ft (26 stories) may not be possible with the equipment of a rural town. A fire may leave wind turbine controls malfunctioning until the equipment in the nacelle is repaired or replaced, making it more susceptible to the kind of accident described above.
Lightning and power surges
Wind turbines themselves cause irregularities in the power supply as wind speed changes. Within the power grid, supply and demand must always be balanced; there is no storage of electricity on this scale. When the wind dies, there is less power (brown-out) until a coal- or gas-powered plant at some distance from the wind installation fires up to increase production. When the wind gusts, there are power surges. Residents living near a new wind turbine installation in Meyersdale, PA, which came on-line in December 2003, have had to replace stove elements and small appliances due to power surges which started at that time. Residents of Lincoln Township, WI, near a wind installation noticed an increase in lightning strikes in their area after the turbines went on-line in June 1999. Two computers protected by surge protectors and a TV set, all in different houses, were simultaneously "fried" one evening when lightning struck a nearby wind turbine tower.
Flicker
When turning with the sun behind them, turbine blades cast moving shadows across the landscape and houses, described as a strobe effect within houses, which can be difficult to block out. Some people lose their balance or become nauseated from seeing the movement. As with car or sea sickness, this is because the three organs of position perception (the inner ear, eyes, and stretch receptors in muscles and joints) are not agreeing with each other: the eyes say there is movement, while the ears and stretch receptors do not. People with a personal or family history of migraine, or migraine-associated phenomena such as car sickness or vertigo, are more susceptible to these effects. The strobe effect can also provoke seizures in people with epilepsy.
In Lincoln Township, WI, two years after installation, 33% of residents 800 ft to ¼ mile from the turbines found shadows from the blades to be a problem, 40% ¼ to ½ mile away, 18% ½ to 1 mile away, and 3% 1 to 2 miles away (230 people sampled).
Noise
In the same survey in Lincoln Township in 2001, 44% of residents 800 ft to ¼ mile from the turbines found noise to be a problem in their households, 52% ¼ to ½ mile away, 32% ½ to 1 mile away, and 4% 1 to 2 miles away (229 people sampled). Under certain conditions the turbines could be heard up to 2 miles away. These numbers correspond well to measurements made by a sound engineer near a more recent 30 MW, 17 turbine installation on the Dutch-German border, where residents living 500 m (1640 ft, or 0.31 mile) and more from the turbines were reacting strongly to the noise, and residents up to 1900 m (1.2 miles) away expressed annoyance. The engineer found that measured sound levels were higher than predicted by standard models because of differences in daytime and nighttime wind patterns, and that annoyance was increased by the impulsive nature or rhythmic thumping of the sound, a pattern found at a distance from the turbines (documented at 1500 m, or 0.9 mile) but not immediately under or among the turbines. This was described as a "low pitched thumping sound."
Noise levels sufficient to prevent or interrupt sleep, even with windows closed, are reported in dwellings close to wind power installations in all surveys. Low frequency sound, defined as 10-200 Hz, travels farther and comes through walls and around obstacles because of its long wavelength; sounds in the range of 25-150 Hz have wavelengths similar to room dimensions, and can reverberate in rooms. Low frequency sound is especially bothersome, according to the World Health Organization:
"Low frequency noise, for example from ventilation systems, can disturb rest and sleep even at low sound levels."
"For noise with a large proportion of low frequency sounds a still lower [measurement] guideline (than 30dBA) is recommended." [This means 30 dB total sound pressure using an "A" filter.]
"When prominent low frequency components are present, noise measures based on A-weighting are inappropriate." [An "A" filter, which filters out low-frequency sounds, is standard in loudness measurement.]
"Since A-weighting underestimates the sound pressure level of noise with low frequency components, a better assessment of health effects would be to use C-weighting." [A "C" filter filters out less of the low-frequency sound.]
"It should be noted that a large proportion of low frequency components in a noise may increase considerably the adverse effects on health."
In other words, the World Health Organization recommends that threshold standards for noise in communities be set lower than 30dB (as measured with the standard "A" filter) whenever the noise has a substantial low-pitched component-as it does from wind turbines. Again, this is because low-pitched noise is more disturbing and has a greater impact on health at low levels than higher-pitched noise. When measuring such noise, a "C" filter will give a more accurate reading of loudness by including more of the low-frequency sounds.
Dr. Amanda Harry, a British physician, found (near a 16-turbine installation in 2003) that 13 out of 14 people surveyed reported an increase in headaches, and 10 reported sleep problems and anxiety. Other symptoms included migraine, nausea, dizziness, palpitations, stress, and depression.
Noise itself can induce dizziness and loss of balance in people with a previous history of noise-induced hearing loss, since, when people damage their hearing through too much exposure to loud (e.g., machine) noise, the balance organs in the inner ear may also be damaged. This is known as the Tullio phenomenon.
Dizziness (specifically, vertigo) and anxiety are neurologically linked phenomena. Hence the anxiety and depression seen in association with other symptoms near wind installations are not a neurotic response to symptoms, but rather a neurologically linked response to the balance disturbances people experience from shadow flicker or low-frequency noise. Sleep deprivation, by the way, also causes anxiety and depression.
Older people, who often sleep less soundly, are more likely to have their sleep disturbed by turbine noise. They may also suffer more disturbances in equilibrium near turbines because of age-related problems with the function of the inner ear (e.g., dizziness and tinnitus: ringing in the ears) or from the nerves or parts of the brain receiving signals from the inner ear. It is noteworthy that among healthy people age 57 to 91, 5% have chronic dizziness, and 24% tinnitus.
Setback
Based on these health effects and hazards, turbines should not be placed within 1700 feet of any road or dwelling. Those living within ½ mile (2640 ft) should be apprised that they are likely to experience very bothersome levels of noise and flicker, which continue (though to a lesser degree) to a mile or more from the turbines. At 2 miles, noise is sometimes heard, but few people are bothered. In Lincoln Township, WI, after two years with the turbines, 73% of people said they would not consider buying or building a house within a mile of the turbines, and 23% wished to be at least 2 miles away (212 people sampled).
It is significant that each of these setbacks (the first for hazard of falling objects, the second for noise) is supported by two unrelated pieces of data yielding the same result. For noise, the data from two wind installations of different ages in different countries, one by resident survey and the other an engineer's measurements, yield the same distance at which noise stops being bothersome: at something greater than 1-1.2 miles. Thus the age or specific type of equipment is not relevant to the noise issue, and specific measurements, properly done, support what neighbors of wind installations are saying.
In conclusion, based on these data, wind turbines should not be built within 1.5 miles of people's homes. Let it be understood, however, that there will still be health and life quality problems caused by wind turbines beyond this radius. People living 1.5 to 3 miles from a proposed turbine site should be notified of potential health and life quality effects, and for this they should be appropriately compensated.

Accueil | A la Une | Vidéo | Régions de France | Dossiers | Plan du site | Forum | Nous Ecrire

Ce site a été crée par Jean-Louis Butré.Ce site est protégé par Copyright©. Contacter le webmaster.